What would a curious robot do?

Exploration and learning in complex environments

The Curious Robot (TCR) is about the challenge of gaining controllability over external DoFs in complex environments.

The challenge: huge continuous state and action space.

Two modes of exploration:

- exploration for discovering DoFs Where are the DoFs?
- exploration for modeling DoFs How to best explore a DoF to maximize learning?

Long term plan: goal-directed manipulation of extenal DoFs

The Method

We approximate the **belief** with a physics simulation.

We focus on learning the geometry and kinematic structure of the environment, i.e., we learn the **object type** (static, free, articulated) and its **properties** (joint type, pose, limits, etc.).

Probability distributions are used for the types and properties of the objects.

The exploration is guided by **active learning** and maximazing the information gain.

The approach

- in the beginning the robot does not know anything about the world
- the robot starts exploring the world
- it picks an object of interest for discovering DoFs
- it interacts with an object of interest for modeling the DoFs
- it updates the belief every time it learns something

The Exploration

Modes and strategies of exploration

The robot must learn how to find DoFs and how to manipulate them. The strategies can be different depending on the object type.

Exploration for discovering

- random
- uncertainty
- heuristic uncertainty
- learned

Exploration for modeling

- random
- heuristic
- learned

Setup & Experiments

Simulation

- the world is a physics simulation of a room (walls, doors, handles, etc.)
- the robot is a flying ball / just an end-effector

Real world

- the world is a living room (doors, drawers, handles, toys, blocks, (light) switches, pens, etc.)
- the robot is our PR2 *BigBird*

Example of the belief update

Dummy Results

Outlook

Next steps

- use data to learn exploration strategies (probably infeasable to use the belief directly)
- more complex world
- transfer everything onto our PR2
- add symbol learning
- benchmark for exploration

Also learn from **human-robot interaction**

- learning by demonstration
- kinesthetic teaching
- directing attention

Authors

Stefan Otte

http://ipvs.informatik.uni-stuttgart.de/mlr/stefan Stefan.Otte@ipvs.uni-stuttgart.de

Johannes Kulick

http://ipvs.informatik.uni-stuttgart.de/mlr/johannes Johannes.Kulick@ipvs.uni-stuttgart.de

Marc Toussaint

http://ipvs.informatik.uni-stuttgart.de/mlr/marc Marc.Toussaint@ipvs.uni-stuttgart.de

GOTO OOI

ARTICULATE_OOI

OBSERVE_OOI_TRAJ