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Abstract—Recently, Auersperg et al. [1] demonstrated that
Goffin’s cockatoos (Cacatua goffini) are able to solve complex
means-means-end problems. This is an impressive cognitive
ability and it is desirable to build models to understand such
abilities. In this paper we describe a project that models such
behavior and recreates the experiment on a robotic platform.
First preliminary results suggest that the serial structure of the
problem does not require much planning.

I. INTRODUCTION

Serial problem solving is a key capability of cognitive
systems. In the recent research Auersperg et al. [1] showed
that Goffin’s cockatoos (Cacatua goffini) are able to solve
means-means-end problems which require up to five dependent
actions. More specifically, the cockatoos had to unlock a
complex mechanism with different locks to reach their reward,
a cashew nut.

Recent work of Kulick et al. [6] showed that learning the
dependency structure of complex mechanisms from interaction
is possible. In their work a robot uncovered the dependency
structure of simpler mechanisms (e.g., keys locked a drawer)
compared the cockatoo experiment. We believe that such a
model is a good starting point to achieve behavior similar to
the cockatoo’s.

In this paper we will lay the groundwork towards recreating
the cockatoo experiment with a robotic platform. Our plan is
to confront our PR2 robot with a mechanism similar to the
cockatoos’. We will show that the joint dependency structure
model of [6] is well suited to capture many important aspects
of the cockatoo experiment. In [6] no goal driven actions
and no external reward were used to uncover the dependency
structures. To capture these aspects we will integrate state-
of-the-art planning mechanisms with the existing dependency
model. Learning success as an intrinsic motivation and reward
for reaching the goal will be used.

Given that this paper is mostly a project description, our
results up to the point are still preliminary. However, first
results in simulation look promising. They suggest that the
serial nature of the problem encourages actions that lead to
the correct solution without the need of planning.

II. RELATED WORK

The research is mainly inspired by the experiments on
Goffin’s cockatoos by Auersperg et al. [1]. They confronted
several cockatoos with a box, locked by a complex mechanism
as shown in Fig. 1a). To reach the reward, the animals had to
unlock all five locks in a serial way. One cockatoo was able to
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solve the whole apparatus without any pre-training on similar
mechanism, whereas other subjects needed pre-training on the
individual locks and others needed “coaching” by a cockatoo
that was already able to open the box. Our goal is to realize
the cockatoo experiment with a robot instead of the animals.

An important aspect of the experiment is uncovering the
dependency structure of serial locks. We will use the approach
described by Kulick et al. [6]. They model the dependency
structure of the mechanism as probability distribution. Using
actively gathered observations (the locking state, the position
of the joints, and force-torque feedback) the posterior is
calculated. The posterior then allows to make statement such
as: “if the screw is between 3 and 15 mm out, it locks the
bolt”.

To integrate rewards (learning success and external reward)
we use the Monte-Carlo tree search (MCTS) algorithm for
planning. MCTS is the state-of-the-art planning method. For
more details about MCTS have a look at Browne et al. [2].
We use planning in belief space as we plan in a partially
observable domain (see Kaelbling et al. [4]).

As intrinsic motivation reward, we use measures from
Bayesian experimental design [3] to reward action that lead
to novel situations. In particular we use the expected cross
entropy measure from Kulick et al. [5] to reward actions that
challenge the current belief.

III. MODELING AND PLANNING

For modeling he dependency structure of the mechanisms
we follow Kulick et al. [6] strictly. We thus have a discrete
distribution for each mechanism, capturing which other joint
locks and unlocks it.

In order to use intrinsic motivation as one reward, we need a
notion of goodness of a state/configuration of the mechanism.
We use a novelty measure for that. A good measure as shown
by Kulick et al. [5] is the cross entropy between the current
belief and the expected belief after an action is taken. We use
this measure as reward in the planning process beside typical
goal reward.

For planning we use MCTS [2] in belief space. It builds
a tree of belief state nodes by simulating actions. As moving
a mechanism to a position is a continuous action (since the
desired position of the joint is continuous) the branching factor
would be infinite. Even for grid discretization the space would
be immense. Thus, we discretize the actions as follows. For
each joint we can compute the action which most likely locks
(and unlocks) the joint. We can also compute the action that
maximizes the expected cross entropy over the belief before
and after the action taken. This yields 3 actions for each joint



(a) The original mechanism the cockatoos
had to open. (Picture from [1]).

(b) The bigger version of the mechanism
to fit the needs of a PR2 robot.

(c) The lockbox with the PR2 robot in
simulation.

and 3 · k total actions where k is the number of joints of the
mechanism.

IV. EXPERIMENTAL SETUP

For this paper we implemented the lock box in simulation
(see Fig. 1c). For the final experiment on the real robot this
will be an enlarged version of the lock box to enable the PR2
to grasp all parts. A prototype of the real world mechanism
is shown in Fig. 1b. Each mechanism must be slid or turned
from its initial configuration to its other limit configuration to
unlock the next mechanism in the chain. We assume that the
robot has the motor skills to move each mechanism into the
desired configuration. The robot can observe both the position
of each mechanism as well as each locking state directly. The
goal is to unlock the last mechanism to open the box.

V. PRELIMINARY RESULTS

We run the experiment in simulation with the following
scenarios: (a) no reward at all (random actions), (b) only
intrinsic motivation, (c) and intrinsic motivation and goal
reward. With random actions the robot is not able unlock the
last door within 30 action. With both only intrinsic motivation
as well as the additional goal reward the robot was able to
reach the goal state within 5 actions, i.e., it directly unlocks
each mechanism in a row.

Note that these are early results and further investigation is
needed.

VI. DISCUSSION

It is not surprising that random actions do not lead to the
desired goal. However, this baseline strategy shows that the
problem is non-trivial.

It is surprising that the robot reaches the goal quickly
without any goal reward. This is due to the serial nature of the
experiment. Intuitively it makes sense that moving a joint as far
as possible has the highest chance of changing a state and thus
is considered most interesting. In our setup of the experiment
moving the joints to the opposite end always unlocks the next
joint. In turn moving the next joint is more interesting as it
has not been moved yet. Now the same argument as before
applies and the joint is again moved as far as possible. With
this sequence the mechanism is unlocked with only 5 actions.

This argument is also backed by the finding that the
cockatoos in the original experiment had problems with the
only mechanism (the wheel) that did not unlock the next

joint at the opposite end. The wheel had to be turned to a
particular position to unlock the next joint. It was among the
two mechanisms that needed the most time in Auersperg et
al.s experiment.

VII. CONCLUSION

In this paper we laid the groundwork to repeat the cockatoo
experiment by Auersperg et al. [1] with a robot instead of
animals. First preliminary results show that the serial structure
of the problem helps to find its solution. It would be interesting
to confront the animals with mechanisms that do not have
this serial structure (e.g., several mechanisms have to be in
a certain configuration in parallel until the next mechanism
is unlocked), or confront them with wheel-like mechanisms
that are not unlocked by simply moving them to the opposite
position.

The results are promising from a robotic perspective as
they show how useful intrinsic motivation might be to solve
planing problems. The comparability of the cockatoo and the
robot is of course somewhat limited as we did not address the
perception and motor skill problems. For the cockatoos one
important aspect of the opening process was to learn, e.g., how
to unscrew the screw. Adding motor skill learning and percep-
tion as additional problems would make the experiments more
comparable to the original experiments and is an interesting
direction for future work.
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